Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Behav Neurosci ; 18: 1341883, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38468708

RESUMEN

Corticosterone (CORT) release during learning experiences is associated with strong memories and activity of the glucocorticoid receptor. It has been shown that lesions of the dorsal striatum (DS) of rats trained in the cued version of the Morris water maze impair memory, and that local injection of CORT improves its performance, suggesting that DS activity is involved in procedural memory which may be modulated by CORT. We trained rats in cued Morris water maze and analyzed the effect of CORT synthesis inhibition on performance, CORT levels, expression of plasticity-involved genes, such as the brain derived neurotrophic factor (BDNF), casein kinase 2 (CK2), and the serum/glucocorticoid regulated kinase 1 (SGK1), as well as the presence of phosphorylated nuclear glucocorticoid receptor in serine 232 (pGR-S232) in the DS. The inhibition of CORT synthesis by metyrapone reduced CORT levels in plasma, prevented its increment in DS and impaired the performance of cued water maze. Additionally, there was an increase of CK2 and SGK1 mRNAs expression in trained subjects, which was unrelated to CORT levels. Finally, we did not observe changes in nuclear pGR-S232 in any condition. Our findings agree with evidence demonstrating that decreasing CORT levels hinders acquisition and consolidation of the spatial version of the Morris water maze; these novel findings broaden our knowledge about the involvement of the DS in the mechanisms underlying procedural memory.

2.
Int J Mol Sci ; 24(13)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37446365

RESUMEN

The Krüppel-like factor 13 (KLF13) has emerged as an important transcription factor involved in essential processes of the central nervous system (CNS). It predominantly functions as a transcriptional repressor, impacting the activity of several signaling pathways with essential roles in the CNS, including the JAK/STAT pathway, which is the canonical mediator of growth hormone (GH) signaling. It is now recognized that GH has important actions as a neurotrophic factor. Therefore, we analyzed the effects of KLF13 on the activity of the JAK/STAT signaling pathway in the hippocampus-derived cell line HT22. Results showed that KLF13 directly regulates the expression of several genes involved in the JAK-STAT pathway, including Jak1, Jak2, Jak3, and Socs1, by associating with their proximal gene promoters. In addition, it was found that in KLF13-deficient HT22 neurons, the expression of Jak1, Stat3, Socs1, Socs3, and Igf1 was dysregulated, exhibiting mRNA levels that went up to 7-fold higher than the control cell line. KLF13 displayed a differential effect on the GH-induced JAK/STAT pathway activity, decreasing the STAT3 branch while enhancing the STAT5 branch. In KLF13-deficient HT22 cells, the activity of the STAT3 branch was enhanced, mediating the GH-dependent augmented expression of the JAK/STAT output genes Socs1, Socs3, Igf1, and Bdnf. Furthermore, GH treatment increased both the nuclear content of KLF13 and Klf13 mRNA levels, suggesting that KLF13 could be part of the mechanisms that maintain the homeostatic state of this pathway. These findings support the notion that KLF13 is a regulator of JAK/STAT activity.


Asunto(s)
Quinasas Janus , Transducción de Señal , Quinasas Janus/genética , Quinasas Janus/metabolismo , Factores de Transcripción STAT/genética , Factores de Transcripción STAT/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , ARN Mensajero/metabolismo
3.
Front Neurosci ; 17: 1164044, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37360158

RESUMEN

The potential for novel applications of classical hormones, such as gonadotropin-releasing hormone (GnRH) and growth hormone (GH), to counteract neural harm is based on their demonstrated neurotrophic effects in both in vitro and in vivo experimental models and a growing number of clinical trials. This study aimed to investigate the effects of chronic administration of GnRH and/or GH on the expression of several proinflammatory and glial activity markers in damaged neural tissues, as well as on sensory recovery, in animals submitted to thoracic spinal cord injury (SCI). Additionally, the effect of a combined GnRH + GH treatment was examined in comparison with single hormone administration. Spinal cord damage was induced by compression using catheter insufflation at thoracic vertebrae 10 (T10), resulting in significant motor and sensory deficits in the hindlimbs. Following SCI, treatments (GnRH, 60 µg/kg/12 h, IM; GH, 150 µg/kg/24 h, SC; the combination of both; or vehicle) were administered during either 3 or 5 weeks, beginning 24 h after injury onset and ending 24 h before sample collection. Our results indicate that a chronic treatment with GH and/or GnRH significantly reduced the expression of proinflammatory (IL6, IL1B, and iNOS) and glial activity (Iba1, CD86, CD206, vimentin, and GFAP) markers in the spinal cord tissue and improved sensory recovery in the lesioned animals. Furthermore, we found that the caudal section of the spinal cord was particularly responsive to GnRH or GH treatment, as well as to their combination. These findings provide evidence of an anti-inflammatory and glial-modulatory effect of GnRH and GH in an experimental model of SCI and suggest that these hormones can modulate the response of microglia, astrocytes, and infiltrated immune cells in the spinal cord tissue following injury.

4.
Int J Mol Sci ; 23(19)2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36232848

RESUMEN

Several motor, sensory, cognitive, and behavioral dysfunctions are associated with neural lesions occurring after a hypoxic injury (HI) in preterm infants. Growth hormone (GH) expression is upregulated in several brain areas when exposed to HI conditions, suggesting actions as a local neurotrophic factor. It is known that GH, either exogenous and/or locally expressed, exerts neuroprotective and regenerative actions in cerebellar neurons in response to HI. However, it is still controversial whether GH can cross the blood-brain barrier (BBB), and if its effects are exerted directly or if they are mediated by other neurotrophic factors. Here, we found that in ovo microinjection of Cy3-labeled chicken GH resulted in a wide distribution of fluorescence within several brain areas in the chicken embryo (choroid plexus, cortex, hypothalamus, periventricular areas, hippocampus, and cerebellum) in both normoxic and hypoxic conditions. In the cerebellum, Cy3-GH and GH receptor (GHR) co-localized in the granular and Purkinje layers and in deep cerebellar nuclei under hypoxic conditions, suggesting direct actions. Histological analysis showed that hypoxia provoked a significant modification in the size and organization of cerebellar layers; however, GH administration restored the width of external granular layer (EGL) and molecular layer (ML) and improved the Purkinje and granular neurons survival. Additionally, GH treatment provoked a significant reduction in apoptosis and lipoperoxidation; decreased the mRNA expression of the inflammatory mediators (TNFα, IL-6, IL-1ß, and iNOS); and upregulated the expression of several neurotrophic factors (IGF-1, VEGF, and BDNF). Interestingly, we also found an upregulation of cerebellar GH and GHR mRNA expression, which suggests the existence of an endogenous protective mechanism in response to hypoxia. Overall, the results demonstrate that, in the chicken embryo exposed to hypoxia, GH crosses the BBB and reaches the cerebellum, where it exerts antiapoptotic, antioxidative, anti-inflammatory, neuroprotective, and neuroregenerative actions.


Asunto(s)
Proteínas Aviares/metabolismo , Hormona del Crecimiento/metabolismo , Fármacos Neuroprotectores , Animales , Barrera Hematoencefálica/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Cerebelo/metabolismo , Embrión de Pollo , Pollos/metabolismo , Humanos , Hipoxia/metabolismo , Recién Nacido , Recien Nacido Prematuro , Mediadores de Inflamación/metabolismo , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Interleucina-6/metabolismo , Fármacos Neuroprotectores/metabolismo , Fármacos Neuroprotectores/farmacología , ARN Mensajero/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
5.
Int J Mol Sci ; 23(16)2022 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-36012320

RESUMEN

Prenatal hypoxic−ischemic (HI) injury inflicts severe damage on the developing brain provoked by a pathophysiological response that leads to neural structural lesions, synaptic loss, and neuronal death, which may result in a high risk of permanent neurological deficits or even newborn decease. It is known that growth hormone (GH) can act as a neurotrophic factor inducing neuroprotection, neurite growth, and synaptogenesis after HI injury. In this study we used the chicken embryo to develop both in vitro and in vivo models of prenatal HI injury in the cerebral pallium, which is the equivalent of brain cortex in mammals, to examine whether GH exerts neuroprotective and regenerative effects in this tissue and the putative mechanisms involved in these actions. For the in vitro experiments, pallial cell cultures obtained from chick embryos were incubated under HI conditions (<5% O2, 1 g/L glucose) for 24 h and treated with 10 nM GH, and then collected for analysis. For the in vivo experiments, chicken embryos (ED14) were injected in ovo with GH (2.25 µg), exposed to hypoxia (12% O2) for 6 h, and later the pallial tissue was obtained to perform the studies. Results show that GH exerted a clear anti-apoptotic effect and promoted cell survival and proliferation in HI-injured pallial neurons, in both in vitro and in vivo models. Neuroprotective actions of GH were associated with the activation of ERK1/2 and Bcl-2 signaling pathways. Remarkably, GH protected mature neurons that were particularly harmed by HI injury, but was also capable of stimulating neural precursors. In addition, GH stimulated restorative processes such as the number and length of neurite outgrowth and branching in HI-injured pallial neurons, and these effects were blocked by a specific GH antibody, thus indicating a direct action of GH. Furthermore, it was found that the local expression of several synaptogenic markers (NRXN1, NRXN3, GAP-43, and NLG1) and neurotrophic factors (GH, BDNF, NT-3, IGF-1, and BMP4) were increased after GH treatment during HI damage. Together, these results provide novel evidence supporting that GH exerts protective and restorative effects in brain pallium during prenatal HI injury, and these actions could be the result of a joint effect between GH and endogenous neurotrophic factors. Also, they encourage further research on the potential role of GH as a therapeutic complement in HI encephalopathy treatments.


Asunto(s)
Hormona de Crecimiento Humana , Hipoxia-Isquemia Encefálica , Fármacos Neuroprotectores , Animales , Animales Recién Nacidos , Embrión de Pollo , Pollos/metabolismo , Hormona del Crecimiento/metabolismo , Hormona de Crecimiento Humana/uso terapéutico , Hipoxia/tratamiento farmacológico , Hipoxia-Isquemia Encefálica/metabolismo , Isquemia/tratamiento farmacológico , Mamíferos/metabolismo , Factores de Crecimiento Nervioso/uso terapéutico , Neuroprotección , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
6.
Neural Plast ; 2021: 9990166, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34567109

RESUMEN

As a classical growth promoter and metabolic regulator, growth hormone (GH) is involved in development of the central nervous system (CNS). This hormone might also act as a neurotrophin, since GH is able to induce neuroprotection, neurite growth, and synaptogenesis during the repair process that occurs in response to neural injury. After an ischemic insult, the neural tissue activates endogenous neuroprotective mechanisms regulated by local neurotrophins that promote tissue recovery. In this work, we investigated the neuroprotective effects of GH in cultured hippocampal neurons exposed to hypoxia-ischemia injury and further reoxygenation. Hippocampal cell cultures obtained from chick embryos were incubated under oxygen-glucose deprivation (OGD, <5% O2, 1 g/L glucose) conditions for 24 h and simultaneously treated with GH. Then, cells were either collected for analysis or submitted to reoxygenation and normal glucose incubation conditions (OGD/R) for another 24 h, in the presence of GH. Results showed that OGD injury significantly reduced cell survival, the number of cells, dendritic length, and number of neurites, whereas OGD/R stage restored most of those adverse effects. Also, OGD/R increased the mRNA expression of several synaptogenic markers (i.e., NRXN1, NRXN3, NLG1, and GAP43), as well as the growth hormone receptor (GHR). The expression of BDNF, IGF-1, and BMP4 mRNAs was augmented in response to OGD injury, and exposure to OGD/R returned it to normoxic control levels, while the expression of NT-3 increased in both conditions. The addition of GH (10 nM) to hippocampal cultures during OGD reduced apoptosis and induced a significant increase in cell survival, number of cells, and doublecortin immunoreactivity (DCX-IR), above that observed in the OGD/R stage. GH treatment also protected dendrites and neurites during OGD, inducing plastic changes reflected in an increase and complexity of their outgrowths during OGD/R. Furthermore, GH increased the expression of NRXN1, NRXN3, NLG1, and GAP43 after OGD injury. GH also increased the BDNF expression after OGD, but reduced it after OGD/R. Conversely, BMP4 was upregulated by GH after OGD/R. Overall, these results indicate that GH protective actions in the neural tissue may be explained by a synergic combination between its own effect and that of other local neurotrophins regulated by autocrine/paracrine mechanisms, which together accelerate the recovery of tissue damaged by hypoxia-ischemia.


Asunto(s)
Hipoxia de la Célula/fisiología , Glucosa/deficiencia , Hormona del Crecimiento/farmacología , Hipocampo/fisiología , Plasticidad Neuronal/fisiología , Neuroprotección/fisiología , Animales , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Células Cultivadas , Embrión de Pollo , Pollos , Hipocampo/citología , Hipocampo/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Neuroprotección/efectos de los fármacos , Oxígeno/metabolismo
7.
Materials (Basel) ; 13(18)2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32971793

RESUMEN

Calcined clay has become the supplementary cementitious materials with the greatest potential to reduce the clinker/cement. In this research, the mechanical strengths and sulphate resistance of blended cements with a high content of calcined clay as a pozzolanic addition were evaluated to demonstrate that these cements could be designed as CEM (cement) type IV/A-SR and IV/B-SR cements by the current European standard UNE-EN 197-1: 2011. The blended cements were prepared by two Portland cements (P1 and PY6) with different mineralogical compositions and a calcined clay. The level of replacement was greater than 40% by weight. The results obtained confirm the decrease in the mechanical strengths and the increase in the sulfate resistance of the two Portland cements when they are replaced by calcined clay at a level of replacement greater than 40%. These results are a consequence of the chemical effect from the pozzolanic activity of the calcined clay. Therefore, there is an important decrease in portlandite levels of paste liquid phase that causes the increase in sulfate resistance and the decrease of the mechanical strengths.

8.
Vitam Horm ; 114: 91-123, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32723552

RESUMEN

Growth hormone (GH) is known to exert several roles during development and function of the nervous system. Initially, GH was exclusively considered a pituitary hormone that regulates body growth and metabolism, but now its alternative extrapituitary production and pleiotropic functions are widely accepted. Through excess and deficit models, the critical role of GH in nervous system development and adult brain function has been extensively demonstrated. Moreover, neurotrophic actions of GH in neural tissues include pro-survival effects, neuroprotection, axonal growth, synaptogenesis, neurogenesis and neuroregeneration. The positive effects of GH upon memory, behavior, mood, sensorimotor function and quality of life, clearly implicate a beneficial action in synaptic physiology. Experimental and clinical evidence about GH actions in synaptic function modulation, protection and restoration are revised in this chapter.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Hormona del Crecimiento/metabolismo , Sinapsis/fisiología , Animales , Encéfalo/metabolismo , Humanos , Potenciación a Largo Plazo/fisiología , Memoria/fisiología , Neuronas/fisiología , Receptores de Somatotropina/genética , Receptores de Somatotropina/metabolismo , Estrés Fisiológico
9.
Front Behav Neurosci ; 14: 12, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32116592

RESUMEN

Aversive events induce the release of glucocorticoid stress hormones that facilitate long-term memory consolidation, an effect that depends on the activation of glucocorticoid receptors (GRs). GRs are distributed widely in the hippocampus. The dorsal region of the hippocampus has been related to cognitive functions and the ventral region to stress and emotion. GR acts as a transcription factor which after hormone binding becomes phosphorylated, affecting its cellular distribution and transcriptional activity. Two functionally well-described GR phosphorylation sites are serine 232 (pSer232), which enhances gene expression, and serine 246 (pSer246), having the opposite effect. Since gene expression is one of the plastic mechanisms needed for memory consolidation, we investigated if an aversive learning task would induce GR phosphorylation in the dorsal (DH) and the ventral (VH) hippocampus. We trained rats in contextual fear conditioning (CFC) using different foot-shock intensities (0.0, 0.5, or 1.5 mA). One subgroup of animals trained with each intensity was sacrificed 15 min after training and blood was collected to quantify corticosterone (CORT) levels in serum. Another subgroup was sacrificed 1 h after training and brains were collected to evaluate the immunoreactivity (IR) to GR, pSer232 and pSer246 by SDS-PAGE/Western blot in DH and VH, and by immunohistochemistry in dorsal and ventral CA1, CA2, CA3, and dentate gyrus (DG) hippocampal regions. The conditioned freezing response increased in animals trained with 0.5 and 1.5 mA during training and extinction sessions. The degree of retention and CORT levels were directly related to the intensity of the foot-shock. Although total GR-IR remained unaffected after conditioning, we observed a significant increase of pSer246-IR in the dorsal region of CA1 and in both dorsal and ventral DG. The only region in which pSer232-IR was significantly elevated was ventral CA3. Our results indicate that fear conditioning training is related to GR phosphorylation in specific subregions of the hippocampus, suggesting that its transcriptional activity for gene expression is favored in ventral CA3, whereas its repressor activity for gene-silencing is increased in dorsal CA1 and in both dorsal and ventral DG.

10.
Int J Mol Sci ; 21(4)2020 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-32093298

RESUMEN

It is known that growth hormone (GH) is expressed in immune cells, where it exerts immunomodulatory effects. However, the mechanisms of expression and release of GH in the immune system remain unclear. We analyzed the effect of growth hormone-releasing hormone (GHRH), thyrotropin-releasing hormone (TRH), ghrelin (GHRL), and somatostatin (SST) upon GH mRNA expression, intracellular and released GH, Ser133-phosphorylation of CREB (pCREBS133), intracellular Ca2+ levels, as well as B-cell activating factor (BAFF) mRNA expression in bursal B-lymphocytes (BBLs) cell cultures since several GH secretagogues, as well as their corresponding receptors (-R), are expressed in B-lymphocytes of several species. The expression of TRH/TRH-R, ghrelin/GHS-R1a, and SST/SST-Rs (Subtypes 1 to 5) was observed in BBLs by RT-PCR and immunocytochemistry (ICC), whereas GHRH/GHRH-R were absent in these cells. We found that TRH treatment significantly increased local GH mRNA expression and CREB phosphorylation. Conversely, SST decreased GH mRNA expression. Additionally, when added together, SST prevented TRH-induced GH mRNA expression, but no changes were observed in pCREBS133 levels. Furthermore, TRH stimulated GH release to the culture media, while SST increased the intracellular content of this hormone. Interestingly, SST inhibited TRH-induced GH release in a dose-dependent manner. The coaddition of TRH and SST decreased the intracellular content of GH. After 10 min. of incubation with either TRH or SST, the intracellular calcium levels significantly decreased, but they were increased at 60 min. However, the combined treatment with both peptides maintained the Ca2+ levels reduced up to 60-min. of incubation. On the other hand, BAFF cytokine mRNA expression was significantly increased by TRH administration. Altogether, our results suggest that TRH and SST are implicated in the regulation of GH expression and release in BBL cultures, which also involve changes in pCREBS133 and intracellular Ca2+ concentration. It is likely that TRH, SST, and GH exert autocrine/paracrine immunomodulatory actions and participate in the maturation of chicken BBLs.


Asunto(s)
Proteínas Aviares/inmunología , Linfocitos B/inmunología , Bolsa de Fabricio/inmunología , Pollos/inmunología , Ghrelina/inmunología , Hormona Liberadora de Hormona del Crecimiento/inmunología , Hormona del Crecimiento/inmunología , Somatostatina/inmunología , Hormona Liberadora de Tirotropina/inmunología , Animales , Linfocitos B/citología , Bolsa de Fabricio/citología , Técnicas de Cultivo de Célula , Células Cultivadas
11.
Int J Mol Sci ; 22(1)2020 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-33383827

RESUMEN

It has been reported that growth hormone (GH) and insulin-like growth factor 1 (IGF-1) exert protective and regenerative actions in response to neural damage. It is also known that these peptides are expressed locally in nervous tissues. When the central nervous system (CNS) is exposed to hypoxia-ischemia (HI), both GH and IGF-1 are upregulated in several brain areas. In this study, we explored the neuroprotective effects of GH and IGF-1 administration as well as the involvement of these endogenously expressed hormones in embryonic chicken cerebellar cell cultures exposed to an acute HI injury. To induce neural damage, primary cultures were first incubated under hypoxic-ischemic (<5% O2, 1g/L glucose) conditions for 12 h (HI), and then incubated under normal oxygenation and glucose conditions (HI + Ox) for another 24 h. GH and IGF-1 were added either during or after HI, and their effect upon cell viability, apoptosis, or necrosis was evaluated. In comparison with normal controls (Nx, 100%), a significant decrease of cell viability (54.1 ± 2.1%) and substantial increases in caspase-3 activity (178.6 ± 8.7%) and LDH release (538.7 ± 87.8%) were observed in the HI + Ox group. On the other hand, both GH and IGF-1 treatments after injury (HI + Ox) significantly increased cell viability (77.2 ± 4.3% and 72.3 ± 3.9%, respectively) and decreased both caspase-3 activity (118.2 ± 3.8% and 127.5 ± 6.6%, respectively) and LDH release (180.3 ± 21.8% and 261.6 ± 33.9%, respectively). Incubation under HI + Ox conditions provoked an important increase in the local expression of GH (3.2-fold) and IGF-1 (2.5-fold) mRNAs. However, GH gene silencing with a specific small-interfering RNAs (siRNAs) decreased both GH and IGF-1 mRNA expression (1.7-fold and 0.9-fold, respectively) in the HI + Ox group, indicating that GH regulates IGF-1 expression under these incubation conditions. In addition, GH knockdown significantly reduced cell viability (35.9 ± 2.1%) and substantially increased necrosis, as determined by LDH release (1011 ± 276.6%). In contrast, treatments with GH and IGF-1 stimulated a partial recovery of cell viability (45.2 ± 3.7% and 53.7 ± 3.2%) and significantly diminished the release of LDH (320.1 ± 25.4% and 421.7 ± 62.2%), respectively. Our results show that GH, either exogenously administered and/or locally expressed, can act as a neuroprotective factor in response to hypoxic-ischemic injury, and that this effect may be mediated, at least partially, through IGF-1 expression.


Asunto(s)
Cerebelo/metabolismo , Hormona del Crecimiento/metabolismo , Hipoxia-Isquemia Encefálica/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Neuroprotección , Animales , Apoptosis , Biomarcadores , Supervivencia Celular , Células Cultivadas , Cerebelo/irrigación sanguínea , Pollos , Regulación de la Expresión Génica , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Hipoxia-Isquemia Encefálica/etiología , Necrosis , Neuronas/metabolismo , Neuroprotección/genética , Daño por Reperfusión/metabolismo , Transducción de Señal
12.
Invest Ophthalmol Vis Sci ; 60(14): 4532-4547, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31675424

RESUMEN

Purpose: In the retina, growth hormone (GH) promotes axonal growth, synaptic restoration, and protective actions against excitotoxicity. Notch signaling pathway is critical for neural development and participates in the retinal neuroregenerative process. We investigated the interaction of GH with Notch signaling pathway during its neuroprotective effect against excitotoxic damage in the chicken retina. Methods: Kainate (KA) was used as excitotoxic agent and changes in the mRNA expression of several signaling markers were determined by qPCR. Also, changes in phosphorylation and immunoreactivity were determined by Western blotting. Histology and immunohistochemistry were performed for morphometric analysis. Overexpression of GH was performed in the quail neuroretinal-derived immortalized cell line (QNR/D) cell line. Exogenous GH was administered to retinal primary cell cultures to study the activation of signaling pathways. Results: KA disrupted the retinal cytoarchitecture and induced significant cell loss in several retinal layers, but the coaddition of GH effectively prevented these adverse effects. We showed that GH upregulates the Notch signaling pathway during neuroprotection leading to phosphorylation of the PI3K/Akt signaling pathways through downregulation of PTEN. In contrast, cotreatment of GH with the Notch signaling inhibitor, DAPT, prevented its neuroprotective effect against KA. We identified binding sites in Notch1 and Notch2 genes for STAT5. Also, GH prevented Müller cell transdifferentiation and downregulated Sox2, FGF2, and PCNA after cotreatment with KA. Additionally, GH modified TNF receptors immunoreactivity suggesting anti-inflammatory actions. Conclusions: Our data indicate that the neuroprotective effects of GH against KA injury in the retina are mediated through the regulation of Notch signaling. Additionally, anti-inflammatory and antiproliferative effects were observed.


Asunto(s)
Agonistas de Aminoácidos Excitadores/toxicidad , Hormona del Crecimiento/uso terapéutico , Ácido Kaínico/toxicidad , Fosfohidrolasa PTEN/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores Notch/metabolismo , Retina/efectos de los fármacos , Animales , Western Blotting , Células Cultivadas , Pollos , Vectores Genéticos , Inyecciones Intravítreas , Fármacos Neuroprotectores/uso terapéutico , Reacción en Cadena en Tiempo Real de la Polimerasa , Retina/metabolismo , Transducción de Señal/fisiología , Organismos Libres de Patógenos Específicos , Transfección
13.
Int J Mol Sci ; 20(18)2019 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-31509934

RESUMEN

In addition to its role as an endocrine messenger, growth hormone (GH) also acts as a neurotrophic factor in the central nervous system (CNS), whose effects are involved in neuroprotection, axonal growth, and synaptogenic modulation. An increasing amount of clinical evidence shows a beneficial effect of GH treatment in patients with brain trauma, stroke, spinal cord injury, impaired cognitive function, and neurodegenerative processes. In response to injury, Müller cells transdifferentiate into neural progenitors and proliferate, which constitutes an early regenerative process in the chicken retina. In this work, we studied the long-term protective effect of GH after causing severe excitotoxic damage in the retina. Thus, an acute neural injury was induced via the intravitreal injection of kainic acid (KA, 20 µg), which was followed by chronic administration of GH (10 injections [300 ng] over 21 days). Damage provoked a severe disruption of several retinal layers. However, in KA-damaged retinas treated with GH, we observed a significant restoration of the inner plexiform layer (IPL, 2.4-fold) and inner nuclear layer (INL, 1.5-fold) thickness and a general improvement of the retinal structure. In addition, we also observed an increase in the expression of several genes involved in important regenerative pathways, including: synaptogenic markers (DLG1, NRXN1, GAP43); glutamate receptor subunits (NR1 and GRIK4); pro-survival factors (BDNF, Bcl-2 and TNF-R2); and Notch signaling proteins (Notch1 and Hes5). Interestingly, Müller cell transdifferentiation markers (Sox2 and FGF2) were upregulated by this long-term chronic GH treatment. These results are consistent with a significant increase in the number of BrdU-positive cells observed in the KA-damaged retina, which was induced by GH administration. Our data suggest that GH is able to facilitate the early proliferative response of the injured retina and enhance the regeneration of neurite interconnections.


Asunto(s)
Hormona del Crecimiento/farmacología , Ácido Kaínico/toxicidad , Regeneración/efectos de los fármacos , Retina/efectos de los fármacos , Animales , Animales Recién Nacidos , Factor Neurotrófico Derivado del Encéfalo/genética , Embrión de Pollo , Pollos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Neurogénesis/genética , Neurogénesis/fisiología , Fármacos Neuroprotectores/farmacología , Neurotoxinas/toxicidad , Receptor Notch1/genética , Regeneración/genética , Regeneración/fisiología , Retina/metabolismo , Retina/fisiopatología , Factores de Transcripción SOXB1/genética
14.
Exp Eye Res ; 169: 157-169, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29407222

RESUMEN

The human growth hormone (GH) locus is comprised by two GH (GH1 and GH2) genes and three chorionic somatomammotropin (CSH1, CSH2 and CSH-L) genes. While GH1 is expressed in the pituitary gland, the rest are expressed in the placenta. However, GH1 is also expressed in several extrapituitary tissues, including the eye. So to understand the role of this hormone in the eye we used the baboon (Papio hamadryas), that like humans has a multigenic GH locus; we set up to investigate the expression and regulation of GH locus in adult and fetal baboon ocular tissues. We searched in baboon ocular tissues the expression of GH1, GH2, CSH1/2, Pit1 (pituitary transcription factor 1), GHR (growth hormone receptor), GHRH (growth hormone releasing hormone), GHRHR (growth hormone releasing hormone receptor), SST (somatostatin), SSTR1 (somatostatin receptor 1), SSTR2 (somatostatin receptor 2), SSTR3 (somatostatin receptor 3), SSTR4 (somatostatin receptor 4), and SSTR5 (somatostatin receptor 5) mRNA transcripts and derived proteins, by qPCR and immunofluorescence assays, respectively. The transcripts found were characterized by cDNA cloning and sequencing, having found only the one belonging to GH1 gene, mainly in the retina/choroid tissues. Through immunofluorescence assays the presence of GH1 and GHR proteins was confirmed in several retinal cell layers. Among the possible neuroendocrine regulators that may control local GH1 expression are GHRH and SST, since their mRNAs and proteins were found mainly in the retina/choroid tissues, as well as their corresponding receptors (GHRH and SSTR1-SSTR5). None of the ocular tissues express Pit1, so gene expression of GH1 in baboon eye could be independent of Pit1. We conclude that to understand the regulation of GH in the human eye, the baboon offers a very good experimental model.


Asunto(s)
Ojo/metabolismo , Regulación de la Expresión Génica/fisiología , Hormona del Crecimiento/genética , Animales , Femenino , Técnica del Anticuerpo Fluorescente Indirecta , Humanos , Papio hamadryas , Hipófisis/metabolismo , Embarazo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Somatotropina/genética
15.
Gen Comp Endocrinol ; 265: 111-120, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29454595

RESUMEN

There is increasing evidence that suggests a possible role for GH in retinal development and synaptogenesis. While our previous studies have focused largely on embryonic retinal ganglion cells (RGCs), our current study demonstrates that GH has a synaptogenic effect in retinal primary cell cultures, increasing the abundance of both pre- (SNAP25) and post- (PSD95) synaptic proteins. In the neonatal chick, kainate (KA) treatment was found to damage retinal synapses and abrogate GH expression. In response to damage, an increase in Cy3-GH internalization into RGCs was observed when administered shortly before or after damage. This increase in internalization also correlated with increase in PSD95 expression, suggesting a neuroprotective effect on the dendritic trees of RGCs and the inner plexiform layer (IPL). In addition, we observed the presence of PSD95 positive Müller glia, which may suggest GH is having a neuroregenerative effect in the kainate-damaged retina. This work puts forth further evidence that GH acts as a synaptogenic modulator in the chick retina and opens a new possibility for the use of GH in retinal regeneration research.


Asunto(s)
Dendritas/metabolismo , Hormona del Crecimiento/farmacología , Ácido Kaínico/toxicidad , Neurogénesis/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Retina/citología , Sinapsis/metabolismo , Animales , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , Células Cultivadas , Pollos/metabolismo , Dendritas/efectos de los fármacos , Endocitosis/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Hormona del Crecimiento/metabolismo , Hormona de Crecimiento Humana/metabolismo , Neuroprotección/efectos de los fármacos , Sinapsis/efectos de los fármacos
16.
Endocr Connect ; 7(2): 258-267, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29321175

RESUMEN

Lactation embodies a natural model of morphological, neurochemical, and functional brain plasticity. In this reproductive stage, the hippocampus of the female is less sensitive to excitotoxins in contrast to nulliparity. Growth hormone (GH) and insulin-like growth factor 1 (IGF1) are known to be neuroprotective in several experimental models of brain lesion. Here, activation of the GH-IGF1 pituitary-brain axis following kainic acid (7.5 mg/kg i.p. KA) lesion was studied in lactating and nulliparous rats. Serum concentrations of GH and IGF1 were uncoupled in lactation. Compared to virgin rats, the basal concentration of GH increased up to 40% but IGF1 decreased 58% in dams, and only GH increased further after KA treatment. In the hippocampus, basal expression of GH mRNA was higher (2.8-fold) in lactating rats than in virgin rats. GH mRNA expression in lactating rats increased further after KA administration in the hippocampus and in the hypothalamus, in parallel to GH protein concentration in the hippocampus of KA-treated lactating rats (43% vs lactating control), as detected by Western blot and immunofluorescence. Except for the significantly lower mRNA concentration in the liver of lactating rats, IGF1 expression was not altered by the reproductive condition or by KA treatment in the hippocampus and hypothalamus. Present results indicate upregulation of GH expression in the hippocampus after an excitotoxic lesion, suggesting paracrine/autocrine actions of GH as a factor underlying neuroprotection in the brain of the lactating dam. Since no induction of IGF1 was detected, present data suggest a direct action of GH.

17.
Int J Mol Sci ; 19(2)2018 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-29373545

RESUMEN

This brief review of the neurological effects of growth hormone (GH) and gonadotropin-releasing hormone (GnRH) in the brain, particularly in the cerebral cortex, hypothalamus, hippocampus, cerebellum, spinal cord, neural retina, and brain tumors, summarizes recent information about their therapeutic potential as treatments for different neuropathologies and neurodegenerative processes. The effect of GH and GnRH (by independent administration) has been associated with beneficial impacts in patients with brain trauma and spinal cord injuries. Both GH and GnRH have demonstrated potent neurotrophic, neuroprotective, and neuroregenerative action. Positive behavioral and cognitive effects are also associated with GH and GnRH administration. Increasing evidence suggests the possibility of a multifactorial therapy that includes both GH and GnRH.


Asunto(s)
Enfermedades del Sistema Nervioso Central/tratamiento farmacológico , Hormona Liberadora de Gonadotropina/metabolismo , Hormona del Crecimiento/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Animales , Sistema Nervioso Central/metabolismo , Quimioterapia Combinada , Hormona Liberadora de Gonadotropina/administración & dosificación , Hormona Liberadora de Gonadotropina/uso terapéutico , Hormona del Crecimiento/administración & dosificación , Hormona del Crecimiento/uso terapéutico , Humanos , Fármacos Neuroprotectores/administración & dosificación
18.
Gen Comp Endocrinol ; 255: 90-101, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28974369

RESUMEN

The somatotropic axis (SA) regulates numerous aspects of vertebrate physiology such as development, growth, and metabolism and has influence on several tissues including neural, immune, reproductive and gastric tract. Growth hormone (GH) is a key component of SA, it is synthesized and released mainly by pituitary somatotrophs, although now it is known that virtually all tissues can express GH, which, in addition to its well-described endocrine roles, also has autocrine/paracrine/intracrine actions. In the pituitary, GH expression is regulated by several hypothalamic neuropeptides including GHRH, PACAP, TRH and SST. GH, in turn, regulates IGF1 synthesis in several target tissues, adding complexity to the system since GH effects can be exerted either directly or mediated by IGF1. In reptiles, little is known about the SA components and their functional interactions. The aim of this work was to characterize the mRNAs of the principal SA components in the green iguana and to develop the tools that allow the study of the structural and functional evolution of this system in reptiles. By employing RT-PCR and RACE, the cDNAs encoding for GHRH, PACAP, TRH, SST and IGF1 were amplified and sequenced. Results showed that these cDNAs coded for the corresponding protein precursors of 154, 170, 243, 113, and 131 amino acids, respectively. Of these, GHRH, PACAP, SST and IGF1 precursors exhibited a high structural conservation with respect to its counterparts in other vertebrates. On the other hand, iguana's TRH precursor showed 7 functional copies of mature TRH (pyr-QHP-NH2), as compared to 4 and 6 copies of TRH in avian and mammalian proTRH sequences, respectively. It was found that in addition to its primary production site (brain for GHRH, PACAP, TRH and SST, and liver for IGF1), they were also expressed in other peripheral tissues, i.e. testes and ovaries expressed all the studied mRNAs, whereas TRH and IGF1 mRNAs were observed ubiquitously in all tissues considered. These results show that the main SA components in reptiles of the Squamata Order maintain a good structural conservation among vertebrate phylogeny, and suggest important physiological interactions (endocrine, autocrine and/or paracrine) between them due to their wide peripheral tissue expression.


Asunto(s)
Hormona Liberadora de Hormona del Crecimiento/genética , Iguanas/genética , Factor I del Crecimiento Similar a la Insulina/genética , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/genética , Somatostatina/genética , Hormona Liberadora de Tirotropina/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Hormona Liberadora de Hormona del Crecimiento/química , Hormona Liberadora de Hormona del Crecimiento/metabolismo , Factor I del Crecimiento Similar a la Insulina/química , Factor I del Crecimiento Similar a la Insulina/metabolismo , Filogenia , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/química , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Somatostatina/química , Somatostatina/metabolismo , Hormona Liberadora de Tirotropina/química , Hormona Liberadora de Tirotropina/metabolismo
19.
Pain ; 158(11): 2117-2128, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28731982

RESUMEN

Oxytocin (OT) has emerged as a mediator of endogenous analgesia in behavioral and electrophysiological experiments. In fact, OT receptors (OTRs) in the spinal dorsal horn participate in a selective inhibition of the neuronal activity mediated by Aδ and C fibers but not Aß fibers. This study shows that OTRs are expressed in the terminal nerve endings and are able to inhibit nociceptive neuronal firing. Indeed, local peripheral OT blocked the first sensorial activity of Aδ and C fibers recorded in the spinal cord neurons. Furthermore, using the formalin behavioral nociceptive test, we demonstrated that only ipsilateral OTR activation inhibits pain behavior. Our data are reinforced by the fact that the OTR protein is expressed in the sciatic nerve. Consistent with this, immunofluorescence of primary afferent fibers suggest that OTRs could be located in nociceptive-specific terminals of the skin. Taken together, our results suggest that OTRs could be found in nociceptive terminals and that on activation they are able to inhibit nociceptive input.


Asunto(s)
Fibras Nerviosas Amielínicas/fisiología , Nocicepción/efectos de los fármacos , Oxitocina/farmacología , Células del Asta Posterior/fisiología , Receptores de Oxitocina/metabolismo , Médula Espinal/citología , Potenciales de Acción/efectos de los fármacos , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Canfanos/farmacología , Relación Dosis-Respuesta a Droga , Estimulación Eléctrica/efectos adversos , Formaldehído/toxicidad , Lectinas/metabolismo , Masculino , Nocicepción/fisiología , Dimensión del Dolor , Piperazinas/farmacología , Células del Asta Posterior/efectos de los fármacos , Desempeño Psicomotor/fisiología , Ratas , Ratas Wistar , Receptores de Oxitocina/análisis , Receptores de Oxitocina/antagonistas & inhibidores , Factores de Tiempo
20.
Gen Comp Endocrinol ; 234: 47-56, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27174747

RESUMEN

It is known that growth hormone (GH) and its receptor (GHR) are expressed in granulosa cells (GC) and thecal cells during the follicular development in the hen ovary, which suggests GH is involved in autocrine/paracrine actions in the female reproductive system. In this work, we show that the knockdown of local ovarian GH with a specific cGH siRNA in GC cultures significantly decreased both cGH mRNA expression and GH secretion to the media, and also reduced their proliferative rate. Thus, we analyzed the effect of ovarian GH and recombinant chicken GH (rcGH) on the proliferation of pre-hierarchical GCs in primary cultures. Incubation of GCs with either rcGH or conditioned media, containing predominantly a 15-kDa GH isoform, showed that both significantly increased proliferation as determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, proliferating cell nuclear antigen (PCNA) quantification and ((3)H)-thymidine incorporation ((3)H-T) assays in a dose response fashion. Both, locally produced GH and rcGH also induced the phosphorylation of Erk1/2 in GC cultures. Furthermore, GH increased IGF-I synthesis and its release into the GC culture incubation media. These results suggest that GH may act through local IGF-I to induce GC proliferation, since IGF-I immunoneutralization completely abolished the GH-induced proliferative effect. These data suggest that GH and IGF-I may play a role as autocrine/paracrine regulators during the follicular development in the hen ovary at the pre-hierarchical stage.


Asunto(s)
Hormonas Gonadales/metabolismo , Células de la Granulosa/metabolismo , Hormona del Crecimiento/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Ovario/metabolismo , Animales , Comunicación Autocrina , Técnicas de Cultivo de Célula , Proliferación Celular , Pollos , Femenino , Comunicación Paracrina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...